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Abstract

Symmetry restrictions on the intensities and polarization
properties of main re¯ections and their satellites are
found for incommensurately modulated crystals in the
case of anisotropic anomalous X-ray diffraction near
absorption edges. It is shown that the modulation
becomes a source of additional anisotropy for each
resonant scatterer and induces a modulated behaviour
of the susceptibility tensor. The four-dimensional
approach is used to calculate the set of possible
re¯ections. It is found that additional (`forbidden')
re¯ections may appear both in the system of main
re¯ections and in the system of satellites. The anisotropy
also results in complex azimuthal and polarization
properties of each re¯ection. The displacive modulation
is discussed in detail. The ATS re¯ections corresponding
to the resonant X-ray diffraction near the K-edge of iron
in pyrrhotite-5.5C are considered.

1. Introduction

It is in the basics of conventional X-ray diffraction
analysis that de®nite extinction rules correspond to the
various spatial symmetry of crystals. The conditions
limiting possible X-ray re¯ections are listed by Hahn
(1987) providing the susceptibility to be a scalar function
invariant under the space-group transformations. If this
is not so, then `forbidden' re¯ections can occur for
various reasons, such as the asphericity of atomic elec-
tron density, anisotropic and unharmonic thermal
motion (Renninger, 1937; Dawson, 1967), the spin-
dependent scattering amplitude (de Bergevin & Brunel,
1981) etc. Special attention should be paid to the case
where the wavelength of the incident radiation is close
to the absorption edge of an element contained in a
crystal. Then `forbidden' re¯ections may occur due to
the anisotropy of X-ray susceptibility. The following
types of such re¯ections have been studied: the ATS or
Templeton re¯ections caused by the local anisotropy of
the tensor of susceptibility (ATS) (Templeton &
Templeton, 1980; Dmitrienko, 1983), magnetic re¯ec-
tions (Gibbs et al., 1988) and re¯ections due to the
simultaneous existence of the magnetic and local crystal
anisotropy (Ovchinnikova & Dmitrienko, 1997).

Any spatial modulation changes the crystal symmetry
and hence changes the conventional X-ray diffraction
pattern (it can even change the extinction rules). For
example, additional `satellites', i.e. re¯ections with non-
integer indices, may appear. The following types of
modulations have been studied in detail: magnetic,
occupational (or substitutional) waves and displacive
modulation. The theory of supersymmetry groups was
developed for the description of incommensurate
structures and composite crystals, which had allowed the
extinction rules and intensities both for the integer
`main' re¯ections and for their satellites to be found (de
Wollf, 1974; Janner & Janssen, 1977).

In the present paper, we are only concerned with non-
magnetic crystals, so that the latter two types of modu-
lation will be taken into account. We suppose that the
X-ray frequency is near an absorption edge, hence the
anisotropy of the local susceptibility can be essential
when the symmetry of the corresponding atomic posi-
tion is lower than cubic. A displacive-type modulation or
an occupation wave can change the local symmetry of
the atomic positions. Hence an additional anisotropy can
appear compared with that existing in the fundamental
structure. As a result, the anisotropic properties of X-ray
resonant scattering can also be modulated. This leads to
the question of whether the modulation can lead to the
appearance of any additional re¯ections near the
absorption edges compared with conventional X-ray
diffraction. This is the main topic considered in the
present paper. To resolve this problem, we use the
symmetry properties of the susceptibility near the
absorption edges. First we consider the changes of the
local atomic environments caused by the modulation in
a crystal. Then we apply both the three- and four-
dimensional approaches to ®nd the main ATS re¯ec-
tions and ATS satellites, which may occur just as a result
of anisotropic X-ray scattering. We conclude with esti-
mations of the considered effects and with several
realistic examples.

2. Susceptibility of a modulated crystal near the
absorption edge

Two types of modulation are widely studied in crystals ±
displacive and occupational (or substitutional) modula-
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tions. Usually the latter is accompanied by the former;
however, it is possible to ®nd cases where they exist
separately. For example, the polytype SiC can be
regarded as a modulated structure with purely occupa-
tional modulation, where the displacive modulation can
be ignored (Yamamoto, 1981; Yamamoto & Inoue,
1982). Of course, the occupational modulation essen-
tially changes the local environments of the resonant
atoms and hence can change the anisotropic properties
of resonant scattering. For example, let us suppose that
in the fundamental structure the resonant atom is at
a position with cubic symmetry. Then its tensor of
susceptibility is isotropic. The appearance of vacancies
nearby violates the cubic symmetry, and anisotropy of
the susceptibility will generally occur. This example can
be explained using Fig. 1. It shows the environments of
the atoms on the boundary of antiphase domains in
Cu±Au alloy (see Yamamoto, 1982a). The occupational
modulation may be the important source of anisotropy,
which becomes essential near the absorption edge. A
special paper will be devoted to its consideration. In the
present paper, we neglect the occupational and
temperature-factor modulations and consider mainly
the atomic displacements. Before a description of a
modulated crystal, we brie¯y discuss the symmetry
properties of the susceptibility tensor in crystals.

2.1. Susceptibility of a fundamental structure near the
absorption edge

To describe the diffraction of X-rays in crystals, we
need the susceptibility tensor �̂�r� or its Fourier
components �̂�h� (see James, 1982; Kolpakov et al.,
1978); hereafter, the hat above a letter means a tensor.

Furthermore, we use the Fourier components of �̂�r�,
which can be represented as

�̂�h� �P
�;s

�f��h�Ê� �̂�res;s� exp�ihr�s �; �1�

where the index � characterizes the crystallographically
unequal atoms, s enumerates crystallographically
equivalent resonant atoms, Ê is a unit tensor, f��h�
corresponds to the potential (Thomson) scattering of
X-rays and �̂�res;s describes the resonant scattering of
X-rays (which is equal to zero for non-resonant atoms).
Furthermore, we shall consider only the resonant part of
the susceptibility tensor and omit the index `res'. If the
sth resonant atom is at a position with some special
symmetry, then

�̂s � R̂l�̂sR̂
ÿ1
l ; �2�

where Rl is the rotation part of the operator ĝl 2 Gl; Gl

is the point group of the local crystal position, which
corresponds to the symmetry of the atomic con®gura-
tion around the resonant (or probe) atom.

The properties of �̂s strongly depend on the type of
resonant transition in the atom. For quadrupole and

higher transitions, �̂ can be expressed as a convolution
of 2L-rank tensors with the wave vectors of incident and
scattered radiation (Hannon et al., 1988; Blume, 1994).
For the dipole transition considered below, �̂s is the
second-rank tensor, which can be subdivided into the
following parts,

���s � �s0�
�� � ���sÿ � ���s�; �3�

where �s0 � tr��̂s�=3, ���sÿ � ����s ÿ ���s �=2, ���s� � ����s �
���s �=2ÿ �s0�

��. In (3), �0 is the scalar (isotropic) part; it
provides nothing new for extinction rules in comparison
with the potential scattering of X-rays. The antisym-
metric part, �̂ÿ, is absent for non-magnetic crystals. The
properties of the symmetrical anisotropic part, �̂�, were
considered by Dmitrienko (1983). There are strong
symmetry restrictions on the tensor form of �̂�r� and
�̂�h� in crystals (Dmitrienko, 1983; Belyakov &
Dmitrienko, 1989) and quasicrystals (Dmitrienko, 1989).
They arise because of the invariance of �̂�r� under the
space-group transformations, i.e.

�̂�r� � R̂g�̂�r0�R̂ÿ1
g ; �4�

where r0 � R̂ÿ1
g �rÿ ag�, R̂g is the matrix of the rotation

and ag is the translation vector. It was shown that �̂�
causes the general-type ATS re¯ections corresponding
to the glide planes and screw axes, but does not violate
the general extinctions related to centring of the lattice.
Let us now ®nd the restrictions on the susceptibility of
modulated crystals.

2.2. Susceptibility of a displacively modulated crystal

According to the well known formulae (de Wolff,
1974; Janner & Janssen, 1977), the atomic positions in
the displacive wave are equal to

r�n � r�0n � u�n ; �5�
where u�n are the displacements of atoms from their
positions in the fundamental (unmodulated) structure,

Fig. 1. The change of the octahedral local environment, which causes
the appearance of the susceptibility anisotropy: (a) example of the
substitutional modulation of the Au atom environment at the
boundary of the antiphase domain in CuAu; (b) the displacive
modulation, which deforms the cubic environment. The oval in the
centre, where the resonant atom is located, characterizes the
anisotropy of X-ray scattering near the absorption edge.
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r�0n, and the index n describes the translation under the
vector n � na, where a is a lattice period. The dis-
placements u�n may be written as

u�n �
P

q2D�
d

U��q� exp�iqn�; �6�

where D�d is a d-dimensional lattice (d � 3) and q is
restricted to the ®rst Brillouin zone (Janner & Janssen,
1977). The modulation leads to the appearance of
satellites apart from the main re¯ections; their positions
and intensities have been studied in detail.

In the modulated crystal, both the resonant atom and
the neighbouring atoms displace from the average
positions according to (5). Thus the local symmetry of
the atomic positions may be violated by the modulation
wave. If the symmetry transformations given by (4) are
not true in the modulated crystal, then the anisotropic
properties of the susceptibility tensor differ from those
in the fundamental structure. For example, if the
symmetry of a resonant atom position in the funda-
mental crystal corresponds to one of the cubic point
groups, the susceptibility is isotropic (in this case no
forbidden re¯ections may appear). However, the
modulation can violate the cubic symmetry and an
anisotropy can occur [see Fig. 1(b)]. Because the atomic
displacements (in an incommensurately modulated
crystal) also depend on the translation vectors, the
susceptibility tensors depend on n as well, i.e. we must
write �̂ns.

Thus, the displacive modulation in¯uences the
susceptibility tensor in two ways: (a) it can violate the
symmetry of the local environment of a resonant atom
and hence provides the additional anisotropy compared
with that in the fundamental structure; and (b) it makes
the susceptibility spatially modulated, i.e. not invariant
under translations contrary to the fundamental struc-
ture. Therefore, we can expect that near absorption
edges additional ATS main re¯ections and satellites may
appear, which are forbidden in conventional diffraction
of X-rays by a modulated crystal.

Different approaches can be used to consider the
susceptibility tensor of an incommensurately modulated
crystal near the absorption edge. The ®rst one is to
calculate the susceptibility tensors using the information
on the atomic displacements in several coordination
spheres. It is possible that a limited number of spheres
should be taken into account, depending on the physical
properties of the crystal. For example, in experiments
with polarized XANES and EXAFS near the Cu K edge
of high-Tc systems, the local cluster within a radius of
about 5 AÊ from the central Cu atom is essential (see
Saini et al., 1997). Using the preliminary information, we
have to calculate the resonant part of the susceptibility
with the help of known theoretical methods (see Carra
& Thole, 1994, and references therein).

In the present paper, we will use another approach
which is based only on the symmetry consideration. We

shall see that it allows the general properties of
diffraction patterns near absorption edges to be
described. Furthermore, we shall apply the four-
dimensional approach to consider the set of possible
re¯ections, which can appear under the resonant
conditions among the main re¯ections and satellites. The
main idea is that the tensorial function �̂ns, which is not
invariant under the space-group transformation in
three-dimensional space R3, should be invariant under
the transformation in a superspace. Similar considera-
tions were used by Dmitrienko (1989) to study the local
anisotropy of icosahedral quasicrystals.

To describe the susceptibility tensor in an incom-
mensurately modulated crystal, we shall use the super-
space groups. It was proposed by de Wolff (1974) that
the symmetry of the modulated structure can be
successfully described with the help of the four-dimen-
sional groups. The conception of superspace groups was
successfully developed by de Wolff et al. (1981) for two-
and three-dimensional modulations.

Let us introduce the four-dimensional second-rank
tensor �̂0�h�, which is equal to [h � �h1; h2; h3; h4��

�̂0�h� �P
�

a�
R1
0

d�x4 ~̂���h; x4�P���x�4 � exp�ÿB���x�4 �h2�;

�7�

~̂���h; x�4 � �
P
�Rsj��

~̂��s ��x�4 �

� exp 2�i
P

j

fhj�R̂sx
���x�4 ��j � hj�jg

 !
; �8�

where P� is the occupation probability, B� is the
isotropic temperature factor, �x�4 is the positional vector
in the fundamental structure, a� is a multiplicity factor
and ~̂��s ��x�4 � are the four-dimensional second-rank
tensors corresponding to the different points of the
��; s�th string in R4. R̂ and � are the parts of the
symmetry operators in R4; they transform the coordi-
nates as follows:

x0i � �R j ��xi �
P4

j�1

Rijxj � �i; �9�

where �i are the components of the translation vector �,
i � 1; 2; 3; 4. The ®rst 3� 3 part of R̂ is the same as the
matrix representation of the rotation operator in R3,
R4i � Ri4 � 0 for i = 1, 2, 3 and R44 � �1 (de Wolff,
1974).

The four-dimensional tensor �̂0�h� of the modulated
crystal is invariant under the symmetry transformations
in R4; thus we can write

�̂0�h0� � R̂�̂0�h�R̂ÿ1 exp�ih��: �10�
In (7), the four-dimensional susceptibility tensor is

denoted as �̂0�h� to indicate its difference from �̂�h� in
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R3. Using �̂�h�, we can calculate the scattering amplitude
F�h� � e�f �̂�h�ei, where ef and ei are the polarization
vectors of the incident and scattered radiation. To obtain
the susceptibility tensor �̂�h� from �̂0�h� we must ®nd its
projection onto R3. Note that the symmetry of �̂0�h� is
not lower than that of ~̂��h; x4�. Using (10), we can ®nd
the set of possible re¯ections and those tensor compo-
nents that differ from zero.

If the resonant atoms occupy special positions in the
fundamental structure, then the additional restrictions
on the tensor components may appear. In this case the
form of the modulation function is constrained owing to
the site symmetry (see Yamamoto, 1982b). Thus the
coordinates of an atom in a special position must satisfy
the following equation:

x�i ��x�4 � �
P4

j�1

Rijx
�
j �Rÿ1

44 ��x�4 ÿ �4�� � �i: �11�

This restricts the possible values of the atomic dis-
placements. For example, the possible displacements of
Fe atoms in wustite were listed by Yamamoto (1982c). In
x3.2, we discuss how the restrictions on the displace-
ments are connected with the restrictions on the tensor
components in R3.

3. ATS re¯ections owing to the modulation of the
susceptibility tensor

3.1. The four-dimensional approach

Let us again suppose the modulation to be one-
dimensional. If tensor �̂0�h� is invariant under the
operations �R j �� of the four-dimensional space group,
the relation (10) determines the restrictions on its
possible components and then the forbidden re¯ections.
Consider the possibility of additional re¯ections in the
presence of a glide plane perpendicular to the x axis,
with the accompanying translation. In the case of a
one-dimensional modulation along the b or c axes, we
have �mx1 j 0; �2; �3; �4�; if q k a then we have
�mx ÿ 1 j 0; �2; �3; �4�. This symmetry element connects
the resonant atoms with the coordinates (i) x1; x2; x3; x4

and (ii) ÿx1; x2 � �2; x3 � �3;�x4 � �4. If the wave-
vector of the modulation is directed along the b or
c axes, then the � sign is realised for the fourth coor-
dinate (R44 � 1) and the ÿ sign is realised if q k a
(R44 � ÿ1). The extinction rule for 0h2h3h4 re¯ections
in conventional X-ray diffraction has the form
h2�2 � h3�3 � h4�4 � n� 1

2. For these re¯ections, the
four-dimensional second-rank tensor ~̂��h; x4�, de®ned
by (8), has the form, for R44 � 1 [� � 1, and it will be
omitted; h � �h1h2h3h4�],

~̂��0h2h3h4; x4� � exp�2�i�h2x2 � h3x3 � h4x4��

�

~�11 ~�12 ~�13 ~�14

~�12 ~�22 ~�23 ~�24

~�13 ~�23 ~�33 ~�34

~�14 ~�24 ~�34 ~�44

0BBB@
1CCCA

8>>><>>>:
� exp�2�i�h2�2 � h3�3 � h4�4��

�

~�11 ÿ ~�12 ÿ ~�13 ÿ ~�14

ÿ ~�12 ~�22 ~�23 ~�23

ÿ ~�13 ~�23 ~�33 ~�34

ÿ ~�14 ~�24 ~�34 ~�44

0BBB@
1CCCA
9>>>=>>>;

� exp�2�i�h2x2 � h3x3 � h4x4��

�

0 2 ~�12 2 ~�13 2 ~�14

2 ~�12 0 0 0

2 ~�13 0 0 0

2 ~�14 0 0 0

0BBB@
1CCCA; �12�

and, for R44 � ÿ1,

~̂��0h2h30; x4� � exp�2�i�h2x2 � h3x3��

�

0 2 ~�12 2 ~�13 0

2 ~�12 0 0 2 ~�24

2 ~�13 0 0 2 ~�34

0 2 ~�24 2 ~�34 0

0BBB@
1CCCA: �13�

Then, using (7), we can calculate �̂0�h�. We will suppose
that the symmetry of �̂0�h� coincides with that of ~̂��h; x4�
(which means the same positions of the zeroth and non-
zeroth tensor components). Perhaps in special cases the
integral under d�x4 can transform those components of
~̂��h; x4� which differ from zero into the zeroth compo-
nents of �̂0�h�. We shall see in the following section that
this is not true even in the case of a simple sinusoidal
modulation.

To obtain the susceptibility tensor �̂�h�, we have to
®nd the projection of �̂0�h� onto R3. For this purpose, we
shall calculate the convolution of the type

��� � n�i �
0
ijn
�
j : �14�

Let us mention that in the case of modulation along the
c axis the coordinate axes in R4 are chosen in the
following way: a1 � a, a2 � b, a3 � cÿ qd, a4 � d,
where a; b; c are the unit vectors of the fundamental
structure, and d is a vector perpendicular to R3. Then we
have n1 � �1; 0; 0; 0�, n2 � �0; 1; 0; 0�, n3 � �0; 0; 1; q�,
according to the chosen basic vectors in R4. The
projection onto R3 of �̂0�h� with tensor structure corre-
sponding to (12) gives (R44 � 1)
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�̂�0h2h3h4� '
0 2�012 2�013 � 2q�014

2�012 0 0

2�013 � 2q0�14 0 0

0@ 1A
�15�

instead of zero in conventional X-ray diffraction. For
q k a, we have (R44 � ÿ1)

�̂�0h2h30�

'
0 2�012 � 2q�024 2�013 � 2q�034

2�012 � 2q�024 0 0

2�013 � 2q�034 0 0

0B@
1CA:
�16�

We can see that in the last case only the main ATS
re¯ections can appear, but their susceptibility in R3

depends on the modulation.
These expressions show that the anisotropy of the

susceptibility in a modulated crystal can give the ATS
re¯ections in both a system of main re¯ections and
satellites. The intensity and polarization of the ATS
re¯ections corresponding to the similar form of the
susceptibility tensor was calculated by Dmitrienko
(1983). This is the case when �-polarization transforms
into �-polarization and vice versa. Thus we have found
the well known polarization properties. However, if we
apply the expressions for the intensity of the scattered
polarized radiation, given by Dmitrienko (1983), we can
see that the functions, which describe the azimuthal
dependences, are different for different kinds of
modulation.

Note that this approach is based only on the
symmetry consideration and does not take into account
the nature of the modulation. Hence it is also correct for
occupational modulation.

The considered approach allows the possibility of the
appearance of forbidden re¯ections to be shown but
does not allow the scattering amplitude to be calculated
explicitly. It is a special problem to ®nd the tensorial
components ~�j4. It would be better to ®nd a model which
allows the intensity of the re¯ections in the presence of
modulation to be compared with those for the funda-
mental structure. Hence we shall apply another
approach, using the model of the susceptibility tensor
variation in R3.

3.2. The model of harmonic displacive modulation

The expression for calculating the scattering ampli-
tude for a modulated crystal has been given by de Wolff
(1974) and Yamamoto (1982b). A similar expression can
be written for the susceptibility tensor in R3. It is the
projection of (7) onto R3,

�̂�h1h2h3h4� �
P
�

P
�Rsj��

a�
R 1

0 d�x�4 �f��h�Ê� �̂�s ��x�4 ��

� P���x�4 � exp
ÿÿ B���x�4 �h2

� 2�i
P

j

�
hj�Rsx

���x�4 ��j � hj�j

	�
: �17�

The notations coincide with those used by Yamamoto
(1982b). Here we include the potential scattering,
described by the scattering amplitude f��h�. The
difference between (17) and the expression given by
Yamamoto (1982b) is that the scalar scattering ampli-
tude, f�, depends only on the chemical type of the atoms
(index �), but the susceptibility tensor in a modulated
crystal depends on �, on the position of the resonant
atom in a unit cell (i.e. on the rotational part Rs of the
symmetry operator) and on the position in the displacive
wave (coordinate �x4). Note that in the presence of
occupational modulation the product f�P���x4� may be
represented as the modulated scattering amplitude.
However, the modulated susceptibility occurs even in
the case of the purely displacive modulation and it
possesses essentially anisotropic tensor properties.

To calculate the susceptibility using this expression,
we need a model for the displacements and a model for
the change of the susceptibility under modulation. Let
us suppose that the susceptibility tensor in the presence
of small incommensurate modulation can be repre-
sented as

�̂s��x�4 � � �̂0�
s ���̂�s ��x�4 �; �18�

where �̂0�
s is the susceptibility tensor corresponding to

the sth resonant atom in a unit cell of the fundamental
structure, and ��̂s��x�4 � is the correction which occurs
due to the modulation. The most clear example is the
case when the resonant atom is located in the point with
cubic symmetry. Then �̂0 ' �ij, but the one-dimensional
modulation produces ��̂�x4� 6� k�ij [see Fig. 1(b)]. Both
��̂�s and �̂�s are spatially modulated and depend on �x4.
See the illustration of this statement in Fig. 2.

If the resonant atom occupies the general position in
the fundamental structure, then all components of both
tensors differ from zero. In the case of the special

Fig. 2. Illustration of the susceptibility tensor modulation: (a) in the
one-dimensional fundamental structure, (b) in the displacive wave.
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position of resonant atoms, ��̂�s ��x�4 � may contain addi-
tional non-zero components compared with �̂0�

s . Let us
consider an example. If the resonant atom lies on the
mirror plane my in R3, then �̂0�

s has the form

�̂0�
s �

�0�
11 0 �0�

13

0 �0�
22 0

�0�
13 0 �0�

33

0@ 1A: �19�

If the superspace group contains �my1 j 0000�, it does
not change the local symmetry in R3. From (11), we have
u1��x�4 � � u1��x�4 �, u2��x�4 � � ÿu2��x�4 �, u3��x�4 � � u3��x�4 �.
Then u2 � 0 and the mirror plane in R3 still remains.
If we have �my1 j 000 1

2�, then u1��x�4 � � u1��x�4 � 1
2�,

u2��x�4 � � ÿu2��x�4 � 1
2�, u3��x�4 � � u3��x�4 � 1

2�. u2 can differ
from zero, and then the symmetry group of the local
position in R3 is Gl � 1 instead of my for the funda-
mental structure. Then all components of the tensor
��̂s��x�4 � can differ from zero.

To calculate the integral in (17), we must consider the
law of �̂�s ��x�4 � variation. For simplicity, we shall consider
the models of the displacive modulation and the
susceptibility modulation to be harmonic. First, let us
suggest the simplest sinusoidal law of modulation,
us��x�4 � � U0 sin�2��x�4 ÿ ��s �, and the following form of
�̂�s ��x�4 �,

�̂s��x�4 � � �̂0�
s ���̂1�

s sin�2��x�4 ÿ ��s �; �20�

where the elements of ��̂1�
s are proportional to U�

0 .
Note that the susceptibility near the absorption edge

is similar to the nuclear resonant susceptibility in
MoÈ ssbauer diffraction in the presence of a quadrupole
hyper®ne interaction. The form of the susceptibility
tensor is similar to the electrical ®eld gradient (EFG) on
nuclei. Using the simplest point charge theory for the
EFG calculation, we can show that the above law of
the tensor modulation can be realised for several
cases (Ovchinnikova, 1997). For example, such a case is
observed when the EFGs on the resonant nuclei are
created by the neighbouring non-resonant atoms, which
are not moved from their positions in the fundamental
structure, but the resonant nuclei are displaced by the
sinusoidal wave. A similar law of EFG modulation was
experimentally observed with the help of NMR for the
crystal Rb2ZnCl4, where Rb nuclei are located in the
positions with m symmetry of a space group Pnma
(Aleksandrova et al., 1983). It was shown that those
tensor components of ��1, which correspond to zero
components of �̂0, differ from zero and depend on U0,
but the others depend on U2

0 .
Using this approach for the susceptibility variation,

we obtain (neglecting the occupation modulation and
temperature factor)

�̂�h1h2h3h4� '
P
�

P
s

exp�2�i�h1x�1s � h2x�2s � h3x�3s�

� ih4���s � ���
� ÿ� f��h�Ê� �̂0�

s �Jm�2��h3 � h4q�U�
0 �

� �i=2���̂1�
s fJm�1�2��h3 � h4q�U�

0 �
ÿ Jmÿ1�2��h3 � h4q�U�

0 �g
�
: �21�

For the main re¯ections, we obtain

�̂�h1h2h30� ' P
�

P
s

exp�2�i�h1x�1s � h2x�2s � h3x�3s��

� f� f��h�Ê� �0�
s �J0�2�h3U�

0 �
� �i=2���̂1�

s �J1�2�h3U�
0 �

ÿ Jÿ1�2�h3U�
0 ��g: �22�

We can see that the correction to the susceptibility in the
main re¯ections, which occur owing to the modulation, is
proportional to the square of the modulation amplitude.
For the ®rst-order satellites, we have (neglecting U3

0 )

�̂�h1h2h31� ' P
�

P
s

exp�2�i�h1x�1s � h2x�2s � h3x�3s�

� i���s � ���f�f��h�Ê� �̂0�
s �

� J1�2��h3 � q�U�
0 �

ÿ �i=2���̂1�
s J0�2��h3 � q�U�

0 �g: �23�

Taking into account that J1 ' U�
0 and ��̂1J0 ' U�

0 , we
®nd that the susceptibility is proportional to the ampli-
tude of modulation. The considered case is similar to
those known for conventional X-ray diffraction by the
solid solutions with the modulation of concentration
together with lattice parameter (Iveronova & Revke-
vitch, 1978). It is essential that the polarization of the
resonant scattering corresponding to the main re¯ec-
tions and to the satellites may differ from each other. If
both the potential and anisotropic scattering take place,
we must take into account the interference effects.

Let us use these expressions to calculate the
susceptibility of a modulated crystal with the sinusoidal
modulation law, which contains two resonant atoms in a
unit cell of the fundamental structure (� � 1 is omitted
further, s � 2). If the superspace group contains the
glide plane �mx1 j 0 1

2 0��, then the amplitudes of the
displacements in two strings coincide, but their wave
phases differ from each other: �1 ÿ �2 � �. We ®nd that
in conventional X-ray diffraction the re¯ections 0kl0 are
absent for k � 2n� 1. For the main re¯ections near the
absorption edge, we have (neglecting all the values
proportional to the square of U0 and higher), for
k � 2n� 1 (hereafter the exponential multipliers are
omitted),
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�̂�0h2h30� ' J0�2�h3U0���̂0
1 ÿ �̂0

2�

� J0�2�h3U0�
0 2�0

12 2�0
13

2�0
12 0 0

2�0
13 0 0

0B@
1CA; �24�

i.e. their susceptibility slightly differs from those of ATS
re¯ections corresponding to the fundamental structure.
For the ®rst-order satellite, we have

�̂�0h2h31� ' exp�2�i�h2x2 � h3x3� � i��� ���
� �ÿf �h�Êf1� exp�2�i�h2=2� ���g � �0

1

� �0
2 exp�2�i�h2=2� ����J1�2��h3 � q�U0�

ÿ i=2f��̂1
1 ���̂1

2 exp�2�i�h2=2� ���g
� J0�2��h3 � q�U0�

�
: �25�

The variants � � 0, h2 � 2n� 1 and � � 1=2, h2 � 2n
give the absence of the ®rst-order satellites in conven-
tional X-ray diffraction, but near the absorption edge
the ATS satellite can be observed, where the suscepti-
bility tensor is proportional to

�̂�0kl1� ' ��̂0
1 ÿ �̂0

2�J1�2��h3 � q�U0�
ÿ �i=2����̂1

1 ÿ��̂1
2�J0�2��h3 � q�U0�: �26�

It was shown by Dmitrienko (1983) that the similar
structure of the susceptibility tensor produces the ATS
re¯ections with the scattering of �-polarization into
�-polarization and vice versa. The azimuthal depen-
dence of their intensity is determined by the values of
the non-zero tensor components. Hence the different
kinds of azimuthal dependences will correspond to the
main re¯ection (24) and ®rst-order satellite (26). Their
comparison in principle allows the correction of the
susceptibility which appears due to modulation to be
studied.

As discussed above in the case of special resonant
atom positions, the tensors �̂0 and ��̂1 may contain
different elements. For example, if in the above example
the resonant atoms are on the mirror plane �my1 j 000 1

2�,
then

��̂0
1 ÿ �̂0

2� '
0 0 2�0

13

0 0 0

2�0
13 0 0

0@ 1A; �27�

instead of a tensor similar to that obtained in (24).
However, the difference (��̂1

1 ÿ��̂2
2� may contain the

elements ��1
12 and ��1

21.
For the non-forbidden re¯ections, we have

�̂�0kl1�

'
2�0

11 � f 0 0

0 2�0
22 � f 2�0

23

0 2�230 2�0
33 � f

0B@
1CAJ1�2��l � q�U0�

ÿ i

2

2��1
11 0 0

0 2��1
22 2��1

23

0 2��1
23 2��1

33

0B@
1CAJ0�2��l � q�U0�;

�28�
i.e. such re¯ections will possess completely different
polarization and azimuthal properties.

If the transition with higher orders (quadrupole and
higher) is taken into account, we should consider the
tensor of fourth and higher orders. In this case, we can
expect the appearance of additional re¯ections
compared with the case of the dipole transition, which
occur due to the high-rank anisotropy in a modulated
crystal.

3.3. ATS re¯ections in pyrrhotite

As an example let us consider the diffraction near the
K edge of iron in the modulated structure of pyrrhotite.
Comprehensive studies of the modulation in pyrrhotite
have been discussed by many authors (Bertaut, 1953;
Tokonami et al., 1972; Nakazawa & Morimoto, 1971;
Koto & Kitamura, 1981; Yamamoto & Nakazawa, 1982).
The fundamental structure of pyrrhotite is described by
the space group Ccmm, where the Fe atoms occupy the
position 4(a) with symmetry 2y=my and the S atoms are
in position 4(c) with symmetry mymz.

Pyrrhotites are magnetic materials; their magnetic
phases have been studied by Schwarz & Vaughan (1972).
Both the incommensurate and magnetic structures of
pyrrhotites depend on the composition and on the
temperature. The phase diagram and magnetic phase
diagram have been described by Nakazawa & Morimoto
(1971) and Schwarz & Vaughan (1972). To avoid the
problems connected with the magnetism, we will sepa-
rate this part of the susceptibility, which is connected
only with local anisotropy. The susceptibility of a
magnetic crystal with local crystal anisotropy can be
represented as

�̂�h� � �̂�l �h� � �̂�m�h� � �̂ÿm�h� � �̂�c �h� � �̂ÿc �h�; �29�
where �̂�l �h� is the part corresponding only to the local
anisotropy, �̂�m�h� are the symmetric and antisymmetric
parts, corresponding to the magnetic structure, and
�̂�c �h� are the parts responsible for the combined effects
(see Ovchinnikova & Dmitrienko, 1997). In the special
case, an expression for the combined part was proposed
by Blume (1994). Above we have considered the ATS
re¯ections, corresponding only to �̂�l �h�. Let us use these
results for pyrrhotite, neglecting all other parts of the
susceptibility. We should like to study the appearance of
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the forbidden re¯ections only, hence we restrict our
consideration to �̂�l �h�. If the other parts of the
susceptibility are taken into account, they can add
something new and change the polarization properties
of the scattering, but the ATS re¯ections still remain.

Hence we suppose that the susceptibility tensors �̂s

near the iron K edge in the fundamental structure
for the atoms with coordinates r1 � �000�, r2 � �12 1

2 0�,
r3 � �00 1

2�, r4 � �12 1
2

1
2� are equal to

�̂0
1 � �̂0

2 �
�0

11 0 �0
13

0 �0
22 0

�0
13 0 �0

33

0@ 1A; �30�

�̂0
3 � �̂0

4 �
�0

11 0 ÿ�0
13

0 �0
22 0

ÿ�0
13 0 �0

33

0@ 1A: �31�

For all S atoms, we have

�̂0
s �

�0
11 0 0

0 �0
22 0

0 0 �0
33

0@ 1A: �32�

The conventional X-ray diffraction pattern corre-
sponding to the fundamental structure contains the
extinctions, listed by Hahn (1987). The anisotropy of the
scattering violates the extinction rules and the ATS
re¯ection can appear near the absorption K edge of iron.
The following tensor describes the ATS re¯ection 00l
�l � 2n� 1� for the fundamental structure,

�̂0�hkl� � �1� �ÿ1�h�k�
0 0 2�0

13

0 0 0

2�0
13 0 0

0@ 1A: �33�

However, no ATS re¯ections occur near the absorption
edge of S.

The modulation in pyrrhotite-5.5C was studied by
Yamamoto & Nakazawa (1982) using the four-dimen-
sional approach. It includes both occupational and dis-
placive modulation. The interatomic distances between
the atoms (FeÐFe, FeÐS and SÐS) were determined
and represented as functions of the parameter
t � �x4 ÿ q�x3. It was shown that the four-dimensional
symmetry group is generated by the following elements:
�E1 j 0; 0; 0; 0�, �mx1 j 1

4 ;
1
4 ;

1
2 ;

1
4�, �my1 j 1

4 ;
1
4 ;0;

1
4�,�2z1 j 0; 0; 1

2 ; 0�. The following extinction rules corre-
spond to these symmetry elements: h1h2h3h4

�h1 � h2 � 2n, h2 � h4 � 2n, h1 � h4 � 2n�; 0h2h3h4

�h2 � 2h3 � h4 � 4n�; h10h3h4 �h1 � h4 � 4n�; 00h3h4

�h3 � 2n�.
To consider the diffraction pattern near the K edge of

iron, we will use the four-dimensional symmetry
approach suggested in x3.1, which does not depend on
the type of modulation. As far as the distances between
the atoms vary under t, the components of the
susceptibility tensors depend on x4. To obtain the

susceptibility tensor in R3, we shall calculate �̂0�h�, but
®rst we calculate ~̂��h�. For pyrrhotite, it can be repre-
sented as

~̂��h1h2h3h4; x4�

�

~�11 ~�12 ~�13 ~�14

~�12 ~�22 ~�23 ~�23

~�13 ~�23 ~�33 ~�34

~�14 ~�24 ~�34 ~�44

0BBB@
1CCCA exp�2�i�h1x1 � h2x2��

8>>><>>>:
�

~�11 ÿ ~�12 ÿ ~�13 ÿ ~�14

ÿ ~�12 ~�22 ~�23 ~�23

ÿ ~�13 ~�23 ~�33 ~�34

ÿ ~�14 ~�24 ~�34 ~�44

0BBB@
1CCCA

� expf2�i�ÿh1x1 � h2x2 � �h1 � h2 � 2h3 � h4�=4�g

�

~�11 ÿ ~�12 ~�13 ~�14

ÿ ~�12 ~�22 ÿ ~�23 ÿ ~�23

~�13 ÿ ~�23 ~�33 ~�34

~�14 ÿ ~�24 ~�34 ~�44

0BBB@
1CCCA

� expf2�i�h1x1 ÿ h2x2 � �h1 � h2 � h4�=4�g

�

~�11 ~�12 ÿ ~�13 ÿ ~�14

~�12 ~�22 ÿ ~�23 ÿ ~�23

ÿ ~�13 ÿ ~�23 ~�33 ~�34

ÿ ~�14 ÿ ~�24 ~�34 ~�44

0BBB@
1CCCA

� exp�2�i�ÿh1x1 ÿ h2x2 � l=2��

9>>>=>>>;
� �1� �ÿ1�h � k��1� �ÿ1�h �m�
� exp�2�i�h3x3 � h4x4��: �34�

We can see that the extinctions of the general re¯ections
corresponding to the centring translations still remain,
i.e. near the absorption edge no additional re¯ections
corresponding to the centring translations will occur
compared with conventional diffraction.

Let us consider the re¯ections 00h3h4, corresponding
to the screw axis. Using (34), we shall obtain the form of
the four-dimensional tensor, corresponding to the
re¯ection with 00h3h4 (h3 � 2n� 1, h4 6� 4n� 2),

~̂��00h3h4; x4� '
0 0 2 ~�13 2 ~�14

0 0 2 ~�23 2 ~�24

2 ~�13 2 ~�23 0 0

2 ~�14 2 ~�24 0 0

0BB@
1CCA: �35�

The projection onto R3 of �̂0�h� corresponding to (35)
gives the following form of �̂�00h3h4�,
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�̂�00h3h4�

'
0 0 2�013 � 2�014q

0 0 2�023 � 2�024q

2�013 � 2�014q 2�023 � 2�024q 0

0B@
1CA:
�36�

This shows that the ATS main re¯ections and 00h3h4-
type (h3 � 2n� 1, h4 6� 4n� 2) satellites can appear
near the absorption edge. They are absent in conven-
tional diffraction patterns of pyrrhotite. The suscep-
tibility tensor and hence the intensity and polarization
properties of the re¯ections will depend on the tensorial
components in four-dimensional space, i.e. on the type of
modulation.

Let us consider the extinction rule corresponding to
the glide plane �mx1 j 1

4 ;
1
4 ;

1
2 ;

1
4�. For the re¯ection with

0h2h3h4 �h2 � 2h3 � h4 6� 4n�, we have

~̂��0h2h3h4; x4� '
0 2 ~�12 2 ~�13 2 ~�14

2 ~�12 0 0 0

2 ~�13 0 0 0

2 ~�14 0 0 0

0BB@
1CCA: �37�

We can see that this tensor differs from zero, and thus
the ATS re¯ections can appear. The projection of (37)
onto R3 is equal to

�̂�0h2h3h4� '
0 2�012 2�013 � 2�014q

2�012 0 0

2�013 � 2�014q 0 0

0@ 1A:
�38�

Similarly, we can ®nd that for the h10h3h4

�h1 � h4 � 4n� 2� re¯ections the susceptibility can
differ from zero,

~̂��h10h3h4� '
0 2 ~�12 0 0

2 ~�12 0 2 ~�23 2 ~�24

0 2 ~�23 0 0

0 2 ~�24 0 0

0BB@
1CCA: �39�

The projection onto R3 is equal to

�̂�0h2h3h4� '
0 2�012 0

2�012 0 2�023 � 2�014q

0 2�023 � 2�014q 0

0@ 1A:
�40�

These calculations show the possibility of the ATS
re¯ections corresponding to glide planes and screw axes,
which can appear near the K edge of iron in pyrrhotite
in the main re¯ections and satellite systems.

4. Conclusions

If the wavelength of the incident X-radiation is close to
the absorption edge of one of the chemical elements in
an incommensurate crystal, ATS re¯ections may appear

owing to the anisotropic properties of the susceptibility
tensor. These properties are caused by the local
symmetry of the resonant atom positions in a crystal as
well as by the type of resonant transition. In the
fundamental structure, the ATS re¯ections can appear
in those points of the reciprocal space where the
extinctions, induced by glide planes and/or screw axes,
exist in conventional X-ray diffraction. The displacive
modulation changes the local crystal anisotropy and also
modulates the susceptibility tensor. As a result, the
following effects have been found in the present paper:

(i) the ATS re¯ections can appear both in the systems
of main re¯ections and satellites;

(ii) the ATS re¯ections can correspond to glide planes
and screw axes in four-dimensional space;

(iii) the ATS re¯ections can appear even in those
cases when the resonant atoms in the fundamental
structure are located in a position with cubic local
symmetry;

(iv) all the ATS re¯ections, both the main and the
satellites, possess the complex azimuthal and polariza-
tion properties;

(v) the properties of main ATS re¯ections and ATS
satellites can differ from each other. They depend on the
modulation type in a crystal. Therefore a comparison of
the azimuthal dependences of the main re¯ections and
satellites would allow the correction to the susceptibility
to be calculated, which appears due to the modulation.

The anisotropy of the susceptibility near the absorp-
tion edge depends essentially on the electronic wave
functions in the ground and excited states. The calcula-
tion of the correction to �̂�h� in a modulated crystal
would allow the change of the valence electron wave
functions under modulation to be studied. Hence the
resonant diffraction near absorption edges provides the
possibility of studying the modulated local environments
of the resonant atoms and the chemical bonds in
incommensurate crystals. The ATS re¯ections, ®rst
observed by Templeton & Templeton (1985), have since
been found in many crystals (Kirfel & Petcov, 1991;
Nagano et al., 1996) and we can expect that they will be
successfully observed in incommensurate structures.

V. PetricÏek is gratefully acknowledged for helpful
discussions.
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